High Volumetric Capacity Three-Dimensionally Sphere-Caged Secondary Battery Anodes.

نویسندگان

  • Jinyun Liu
  • Xi Chen
  • Jinwoo Kim
  • Qiye Zheng
  • Hailong Ning
  • Pengcheng Sun
  • Xingjiu Huang
  • Jinhuai Liu
  • Junjie Niu
  • Paul V Braun
چکیده

High volumetric energy density secondary batteries are important for many applications, which has led to considerable efforts to replace the low volumetric capacity graphite-based anode common to most Li-ion batteries with a higher energy density anode. Because most high capacity anode materials expand significantly during charging, such anodes must contain sufficient porosity in the discharged state to enable the expansion, yet not excess porosity, which lowers the overall energy density. Here, we present a high volumetric capacity anode consisting of a three-dimensional (3D) nanocomposite formed in only a few steps which includes both a 3D structured Sn scaffold and a hollow Sn sphere within each cavity where all the free Sn surfaces are coated with carbon. The anode exhibits a high volumetric capacity of ∼1700 mA h cm(-3) over 200 cycles at 0.5C, and a capacity greater than 1200 mA h cm(-3) at 10C. Importantly, the anode can even be formed into a commercially relevant ∼100 μm thick form. When assembled into a full cell the anode shows a good compatibility with a commercial LiMn2O4 cathode. In situ TEM observations confirm the electrode design accommodates the necessary volume expansion during lithiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Full-Electrode Basis Capacity Template-Free 3D Nanocomposite Secondary Battery Anodes.

A high full-electrode basis capacity secondary battery anode consisting of a template-free 3D nanostructured Fe3O4/C composite is presented. On a full electrode basis, the nanocomposite exhibits attractive electrochemical performance including a volumetric capacity of 1064 mAh cm(-3), which significantly exceeds both the practical (≈300 mAh cm(-3)) and theoretical (837 mAh cm(-3)) capacity of a...

متن کامل

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.

Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anod...

متن کامل

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes

Nanostructuring has been shown to be fruitful in addressing the problems of high-capacity Si anodes. However, issues with the high cost and poor Coulombic e ciencies of nanostructured Si still need to be resolved. Si microparticles are a low-cost alternative but, unlike Si nanoparticles, su er from unavoidable particle fracture during electrochemical cycling, thus making stable cycling in a rea...

متن کامل

Three-dimensionally scaffolded Co3O4 nanosheet anodes with high rate performance

Three-dimensionally scaffold-based anodes are fabricated. Thin nanosheets provide efficient pathways for electron and ion

متن کامل

Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density

Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2016